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A method is presented to identify moving loads on a bridge deck modelled as an
orthotropic rectangular plate. The dynamic behavior of the bridge deck under moving loads
is analyzed using the orthotropic plate theory and modal superposition principle, and
Tikhonov regularization procedure is applied to provide bounds to the identi"ed forces in
the time domain. The identi"ed results using a beam model and a plate model of the bridge
deck are compared, and the conditions under which the bridge deck can be simpli"ed as an
equivalent beam model are discussed. Computation simulation and laboratory tests show
the e!ectiveness and the validity of the proposed method in identifying forces travelling
along the central line or at an eccentric path on the bridge deck.
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1. INTRODUCTION

Information of vehicular load on a bridge deck is essential to bridge design as it constitutes
the live load component in the bridge design code. Traditionally, the vehicular load is either
measured directly from an instrumented vehicle [1, 2] or computed from models of the
bridge deck and the vehicle [3}5]. It would be very expensive and the results obtained are
subjected to bias in the "rst approach, while the second approach is subjected to modelling
errors. Systems have been developed for weigh-in-motion of the vehicles [6, 7], but they all
measure only the static axle loads. All the weigh-in-motion techniques treat the bridge and
vehicle in a two-dimensional problem. A technique to estimate the vehicular loads from the
vibration responses of the bridge deck is required such that the di!erent parameters of the
bridge and vehicle system are accounted for in the measured responses, and the cost
involved would be much less than that by direct measurement.

O'Connor and Chan [8] developed a method to identify the vehicle}bridge interaction
force, in which the bridge is modelled as an assembly of lumped masses interconnected by
massless elastic beam elements. Law et al. [9] modelled the bridge deck as a simply
supported Euler beam. The interaction forces are represented as step functions in a small
time interval. The moving forces are then identi"ed using the modal superposition principle
in time domain. Later, Law et al. [10] performed Fourier transformation on the equations
of motion which are expressed in modal co-ordinates. The relation between the responses
and the forces is obtained in frequency domain. The time histories of the forces are found by
the least-squares method. Chan et al. [11] used an Euler beam to model the bridge deck in
the interpretation of dynamic loads crossing the deck. The Euler beam theory together with
modal analysis is used to identify moving loads from the bridge responses. Law and Fang
[12] also reported a state estimation approach in which the state-space formulation of the
0022-460X/00/390705#20 $35.00/0 ( 2000 Academic Press
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dynamic system is solved using dynamic programming with minimization of the errors
between the measured and the reconstructed responses from the identi"ed moving forces.
Another method based on the modal superposition and optimization technique is also
developed by Zhu and Law [13] to identify a group of moving forces in the time domain.
The bridge deck is modelled as a multi-span continuous Timoshenko beam with
non-uniform cross-section, and the forces are modelled as a group of moving loads.

All the above works are based on the bridge}vehicle interaction with a simply supported
beam. A beam model cannot truly represent the three-dimensional behavior of the
bridge deck in practice, particularly when a vehicle travels not along the centerline of
the bridge deck. Since many types of bridge decks, including those of slab bridges,
hollow-core slab bridges, and deck and girder bridges can be e!ectively modelled by an
isotropic or orthotropic plate [14], identi"cation of the real interaction forces is possible
and feasible.

The bridge deck is modelled as a simply supported orthotropic rectangular plate in this
study. Dynamic behavior of the bridge deck under moving loads is analyzed using the
orthotropic plate theory and modal superposition. A moving load identi"cation method
based on a regularization procedure is developed, and the solutions are obtained in time
domain. The conditions under which the bridge deck can be simpli"ed as an equivalent
beam are discussed, and the identi"cation of eccentric travelling loads is presented.
Computational simulation and laboratory test results are given to illustrate application of
the proposed method to identify a two forces system.

2. FREE VIBRATION OF A PLATE

The problem of a plate under the action of moving forces attracted much research
attention only in the last two decades. Fryba [15] has solved analytically the dynamic
responses of uniform #at plate under a moving load along a speci"ed path. Wu et al. [16]
analyzed the dynamic responses of a #at plate subjected to various moving loads by the
"nite element method. Later, Wang and Lin [17] analyzed the dynamic behavior of
a multi-span continuous Mindlin plate subjected to a moving load. Transfer matrix is used
to determine the natural frequency and the vibration modes of the plate. Marchesiello et al.
[18] analyzed the dynamics of multi-span continuous straight bridges subjected to
multi-degrees-of-freedom (d.o.f.) moving vehicle excitation by applying the mode
superposition principle. The modes are computed by means of the Rayleigh}Ritz method.
Chan and Chan [19] analyzed the dynamic behavior of slab-on-girder bridges by eccentric
beam elements. Zhu and Law [20] modelled the bridge deck as an orthotropic plate, and
the dynamic behavior of the bridge deck under moving loads is analyzed basing on the
modal superposition principle. A brief description of the plate model using in this paper is
given below.

According to Hu$ngton and Hoppmann [21], the governing equations of motion of an
orthotropic plate shown in Figure 1 can be written as follows:
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Figure 1. Orthotropic plate under moving loads.
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D
x
,D

y
are the #exural rigidities of the orthotropic plate in the x and y directions

respectively, D
k
is the twisting rigidity of plate, C the damping coe$cient, h the thickness of

the plate, E
x
,E

y
are the modulus of the plate in the x and y directions respectively, l

xy
the

Poisson ratio associated with a strain in the y direction for a load in the x direction, G
xy

the
shear modulus, p(x, y, t) the external transverse load, w(x, y, t) the displacement of plate in
the z direction and o the mass density of plate material.

The free vibration of the plate without damping is analyzed. Assuming the plate is simply
supported along x"0 and a with the other two sides free to vibrate. The displacement of
the plate can be written as
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where u
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is the natural frequency corresponds to the mth mode in the x direction and the
nth node in the y direction, h the initial angle, and >

mn
(y) sin (mpx/a) the mode shape.

Substituting equation (2) into equation (1), one has
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The solution on >
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(y) can be obtained [20] and classi"ed as follows according to the
properties of the plate.
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and the natural frequencies are determined from the free

boundary conditions at y"0 and b. The edge moment, the transverse shear and the
torsional moment are zero at these edges, giving
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Substituting equation (2) and equations (4)} (9) into equation (10), the following equation
can be obtained:

AMCN"0, (11)

where A is a coe$cient matrix Ma
ij
N detail formulation of each coe$cient are listed in

Appendix B for the di!erent classi"cations presented above, and MCN"
MA

mn
B
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C
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mn
NT.

Since only the non-zero solution of equation (11) is of interest, the determinant of the
coe$cient matrix is set equal to zero from which the natural frequencies
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u
mn

(m"1, 2,2; n"1, 2,2) are obtained. Vector MCN can then be obtained for each
natural frequency, and hence >

mn
(y) can be found.

3. DYNAMIC BEHAVIOR UNDER MOVING LOADS

The equations of motion of the orthotropic plate under moving loads expressed in
equation (1) can be written as follows by expressing the force p as a time step function:
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l
(t). d(x), d(y) are the Dirac function.

By modal superposition, the displacement of the orthotropic plate can be written as follows:
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Substituting equation (13) into equation (12) results in
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y directions respectively. Equation (14) can be solved in the time domain by the convolution
integral with the plate initially at rest, yielding
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Substituting equation (15) into equation (13), the displacement of the orthotropic plate at
point (x, y) and time t can be found, as
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4. MOVING LOAD IDENTIFICATION

4.1. LOAD IDENTIFICATION FROM STRAINS

The strains under the orthotropic plate at point (x, y) and time t are
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(x, y, t) are the strains at the bottom surface of the plate along x and
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t
is the distance from the neutral axis to the bottom tension
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Equation (19) is rewritten in matrix form (only the x direction strains are presented since
those for the y direction strains are similar)
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Since the identi"ed force P is not a continuous function of the measured data,
a regularization method developed by Tiknonov [22] is used to solve this ill-posed problem
[23]. The load identi"cation problem can be formulated as the following damped
least-squares problem.
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where j is a non-negative regularization parameter in the form of a diagonal matrix. R is
a weight matrix determined from the measured information.

4.2. LOAD IDENTIFICATION FROM ACCELERATIONS

The acceleration at a point (x, y) and time t obtained from equation (17) is
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Equation (27) can also be written in matrix form as follows:
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Again the load identi"cation problem is formulated as a damped least-squares problem,

minJ(P, j)"(wK!DP, R(wK!DP))#j(P, P). (32)

The moving loads are determined from equations (24) and (32) using either strains or
accelerations or both. The method to determine the optimal regularization parameter j is
referred to the work by Busby and Trujillo [24].

5. COMPUTATION ALGORITHM

The computational process is implemented as follows:

(1) basing on the maximum exciting frequency generated by the moving loads, the
number of mode shapes MM]NN, the number of the measuring points N

s
and the

sampling frequency are determined;
(2) the natural frequencies u

mn
and the mode shapes =

mn
(x, y) of the orthotropic

rectangular plate are calculated according to equation (11);
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(3) matrix B
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(7) determine the optimal regularization parameter j by minimizing the function J(P, j)
using MATLAB. The moving loads can then be calculated from Steps 5 and 6.

6. VERIFICATION AND DISCUSSIONS

6.1. RELIABILITY OF THE METHOD IN EXPERIMENT

The experimental results obtained for a model car moving on a simply supported beam
are used for this study. The experimental set-up is shown diagrammatically in Figure 2. The
main beam located in the laboratory is 3678 mm long with 100 mm]25 mm uniform
cross-section. The Young's modulus of material is 2)1]109N/m2. The mass density is
2300 Kg/m3, and the Poisson ratio is 0)3. A leading beam for the vehicle to pick up speed
and another beam at the other end for receiving the vehicle after its exit from the main beam
are also shown. The beams are simply supported and the ends of the beams are placed close
together leaving only a very narrow gap of approximately 1 mm. This is necessary in order
not to have a large impulsive force on the beam when the wheels cross the gap.

A U-shaped aluminum section on the upper surface of the beams serves as a direction
guide for the car. The model car is pulled along the guide by a string wound on a wheel
mount on the axle of an electric motor where the rotating speed can be adjusted. Thirteen
photoelectric seasons are mounted on the beams to measure and monitor the moving speed
of the car.

Seven strain gauges are mounted at the bottom of the main beam to measure the bending
moment responses of the beam. A TEAC 14-channel magnetic tape recorder and an
8-channel dynamic testing and analysis system are used for data collection and analysis in
the experiment. The sampling frequency is 2000 Hz. The recorded length of each test lasts
for 6 s. The model car has two axles at a spacing of 0)557 m and it runs on four steel wheels



Figure 2. Diagrammatic drawing of the experimental set-up.
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with rubber band on the outside. The mass of the whole car is 16)6 kg. The static axle
weights are 8)78 and 7)82 kg for the front and rear axles respectively. The transverse spacing
between wheels is 0)08 m.

The car is modelled as two-axle forces moving on top of the beam. The beam sub-system
has very small damping, and hence the damping coe$cient is set to 0)02 in the computation.
Figure 3 shows the measuring strains at 1/4L, 1/2L and 3/4L. Since the transverse spacing of
the wheels is very small compared with the axle spacing, the identi"cation is in terms of the
axle loads instead of the individual wheel loads which are di$cult to di!erentiate. Figure
4 shows the identi"ed axle forces using the beam model [13] and using the plate model
described in this paper. The vehicle moves at an average speed of 1)1856 m/s, and the
"rst three modes are used in the identi"cation. There are large #uctuations in the two
sets of results especially after the entrance of the second axle and before the exit of the
"rst axle. The two sets of curves are close to the static axle weight with large #uctuations in
their histories. The #uctuations are a!ected by the measurement noise, and therefore
whether a beam model can replace a plate model in the analysis or not cannot be
ascertained from these results. The following section gives further discussions on the
conditions when a plate can be modelled as a beam without introducing signi"cant errors in
the identi"ed forces.

6.2. THE BEAM MODEL VERSUS THE PLATE MODEL

A beam model for the bridge deck can be derived from equations (16) and (17). The
displacement at a point along the central line of the bridge deck with the loads moving



Figure 3. Strains at 1/4L, 1/2L and 3/4L: **, 1/4L; - - -, 1/2L; ) ) ) ), 3/4L.
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along y"e can be obtained from equation (17) as follows:
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where e is the eccentricity of the moving load, and h is the thickness of the beam.
If n"1, i.e., the torsional modes are not considered, equation (35) is the same as that for

the displacement of an equivalent beam. Therefore, the identi"cation can be simpli"ed using
a beam model when n"1. Table 1 shows the natural frequencies of an isotropic plate with
two simply supported edges and two free edges. The length of the plate is 3)678 m and the
thickness is 0)025 m. The width of the plate varies from 0)1 to 1)8 m. The lowest several
modes of the plates mainly consist of longitudinal modes in the x direction with n"1.

Two constant forces 87)25 and 38)25 N at a "xed spacing of 0)557 m are moving across
the plate at 1)0 m/s. The sampling rate is 100 Hz. Figure 5 shows the identi"ed forces from
accelerations at 1/4a, 1/2a, 3/4a and 1/2b of a 0)1 and 0)4 m wide plate using the beam and
the plate models, and the lowest three modes with n"1 are used. The resulting curves for
the two-plate models overlap and exactly match those of the true forces without error. The
three sets of curves are very close to each other except near the start and end of the time
histories. The plate model can exactly identify the forces using the proposed method, while



Figure 4. Identi"ed forces by beam model and plate model: **, beam model; - - -, plate model.
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results from the beam models deteriorates for a larger width of the plate used in the model.
The modal frequencies in Table 1 indicate that the beam model would be accurate enough
for identifying the moving loads when the highest natural frequency of the plate with n"1,
is larger than the frequencies used in the identi"cation.



TABLE 1

Natural frequencies (Hz) of beam and plate with di+erent width

x-mode no.

Width of plate Mode type 1 2 3 4 5 6

Beam model B 4)32 17)27 38)86 69)08 107)94 155)43
(0)1 m width)

Plate model 0)1 m B 4)22 16)89 38)01 67)59 105)66 152)23

0)2 m B 4)22 16)90 38)07 67)76 106)03 152)94
"rst T * * * * 107)54* *

0)3 m B 4)22 16)92 38)14 67)97 106)50 153)80
"rst T * * * 71)77* 144)35* *

0)4 m B 4)23 16)94 38)24 68)23 107)01 154)68
"rst T * * 53)91* * 108)89* *

1)8 m B 4)27 17)35 39)38 70)36 110)29 159)17
"rst T 12)72* 29)68* 51)57* 85)26* 125)55* *

second T * * 53)46* 97)36* 128)93* *

third T * * 70)22* 132)16* *

fourth T * * * * 146)95* *

*Denotes the natural frequency corresponds to mode shape mainly in the y direction (B: bending mode; second
T: second torsional mode).

Figure 5. Identi"ed forces by beam model and plate model:**, plate model; - - -, beam model (0)1 m wide); ) ) ) ),
beam model (0)4 m wide).
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6.3. TWO MOVING LOADS IDENTIFICATION WITH PLATE MODEL

A diagrammatic cross-section of a simply supported beam-slab-type bridge deck is shown
in Figure 6. The parameters of the bridge deck are listed as follows: a"20m, b"11m,
E"2)1]109 N/m2, o"2300kg/m3. For I-beam: I"0)118m4, J"0)04385m2, top slab
thickness"0)2m, depth of girder"1)13m.

The two moving loads to be identi"ed are

p
1
(t)"150 000(1#0)1 sin 10nt#0)05 sin 40nt) N,

p
2
(t)"150 000(1!0)1 sin 10nt#0)05 sin 50nt) N.

Note that there is an out-of-phase component in the forces simulating the pitching motion
of a vehicle. White noise is added to the calculated displacements due to the moving loads to
simulate the polluted measurement as

wK"wK
calculated

(1#E
p
N

oise
),

e"e
calculated

(1#E
p
N

oise
),

where wK , e are the measured accelerations and strains used for the identi"cation, E
P

is the
noise level, N

oise
is a standard normal distribution vector (with zero mean value and unit

standard deviation). wK
calculated

, e
calculated

are the calculated accelerations and strains. The
errors in the simulating results are calculated from the following equation:

S"
EP

idenfied
!P

True
E

EP
True

E
]100%.

Calculations are made for the loads moving at a "xed spacing of 4 m along the central
line and along y"3/8b. The moving speed is 10 m/s and the sampling rate is 100 Hz. The
lowest nine vibration modes are used in the simulation, and nine measurement points are
located at 1/4a, 1/2a and 3/4a on the second, third and the fourth I-beams. The number of
the measuring points is taken equal to the number of the vibration modes [13].

Figure 7 shows the identi"ed results moving along the central line from the accelerations
and the strains with 1% noise level. Very good results are achieved except at the start and
end of the time histories. There is a large deviation between the true load and the curves
Figure 6. A simply supported beam-slab bridge deck.



Figure 7. Identi"ed forces from accelerations and strains: **, true load; - - -, acceleration; ) ) ) ), strains.

TABLE 2

Errors in the identi,ed forces with di+erent noise levels

Eccentricity Responses N
oise

(%) j First force (%) Second force (%)

0 Acceleration 1 4)29]10~13 2)74 2)53
5 4)96]10~11 12)30 11)25

10 1)26]10~10 18)97 17)81
Strain 1 1)23]10~21 15)92 17)69

5 1)31]10~20 27)44 29)42
10 2)44]10~20 34)71 37)00

1/8b Acceleration 1 1)60]10~12 4)30 4)16
5 5)51]10~11 15)29 14)20

10 1)17]10~10 22)44 21)24
Strain 1 1)22)]10~21 16)60 18)48

5 1)17]10~20 28)51 30)48
10 2)21]10~20 35)97 38)13
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from strain when the load is near the mid-span of the beam. This is due to the noise e!ect
that increases with the large strain responses when the load is at mid-span. The observation
contrasts with the identi"ed results when there is no noise in the responses and the identi"ed
forces exactly match those of the true forces. The curves from acceleration exhibit no such
large di!erences, because the acceleration responses remain relatively stable throughout the
duration. Those from accelerations almost match the true curves perfectly. Table 2 shows
the errors in the identi"ed forces with no smoothing on data at di!erent noise levels.



Figure 8. Identi"ed forces from strains with or without smoothing: **, true load; - - -, smoothing; ) ) ) ), no
smoothing.
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Accelerations give much better results than strains at di!erent noise levels, and the
identi"cation of eccentric load using this set of sensors gives slightly larger errors than the
loads along the central line. This may be due to the smaller responses at the sensor locations
caused by the eccentric loads. Further work has to be done on the best sensor locations for
identifying loads moving on di!erent paths.

Figure 8 shows the identi"ed loads moving along the central line from the strains only
with or without three-points smoothing on the measured data with 1% noise level. It is seen
that smoothing before the identi"cation can improve the results signi"cantly specially on
the variation in the middle of the time histories. This variation is due to the low response
when the force traverses the mid-span of the structure where the second longitudinal modes
responses are smallest. Table 3 also shows reduction in the errors over the whole time
period when smoothing is used. The improvement is larger in the strains than the
accelerations.

7. CONCLUSIONS

A method to estimate loads moving on top of a bridge deck using the measured structural
responses is presented. The bridge deck is represented by an orthotropic plate model and
Tikhonov regularization technique is used to provide bounds to the identi"ed forces. The
simulation and laboratory results show that

(1) The method proposed in the paper is e!ective to identify the moving loads from the
responses of the bridge deck, and acceptable results can be obtained either from the



TABLE 3

Errors in the identi,ed forces with or without smoothing

Responses N
oise

(%) j First force (%) Second force (%)

No smoothing Acceleration 1 4)29]10~13 2)74 2)53
5 4)96]10~11 12)30 11)25

10 1)26]10~10 18)97 17)81
Strain 1 1)23]10~21 15)92 17)69

5 1)31]10~20 27)44 29)42
10 2)44]10~20 34)71 37)00

Smoothing Acceleration 1 1)22]10~20 2)72 3)14
5 2)80]10~12 9)24 9)43

10 6)63]10~11 13)59 13)59
Strain 1 7)57]10~23 9)07 10)06

5 1)84]10~21 18)60 20)51
10 6)38]10~21 24)76 27)01
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accelerations or the strains, but acceleration measurements would provide better
results than those from strain measurements. Identi"cation of forces moving on an
eccentric path in slightly less accurate than that for forces moving along the central
line of the bridge deck when the sensors are around the middle of the bridge
cross-section.

(2) When the measuring noise is very large, pre-processing procedures are required to
reduce the measurement noise in the responses before the regularization method can
work e!ectively to provide bounds to the identi"ed forces.

(3) When the lower modes of the bridge deck are dominated by vibration modes along
the longitudinal axis, a beam model instead of a plate mode may be accurate enough
in the identi"cation.
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APPENDIX A. FORMULATION OF COEFFICIENTS a
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When D

x
(ohu2

mn
(a/mn)4,

a
11
"0, a

12
"r2

2mn
!vA

mn
a B

2
, a

13
"0, a

14
"!r2

1mn
!vA

mn
a B

2
,

a
21

"a
12

sin(r
2mn

b), a
22

"a
14

sinh(r
1mn

b),

a
23
"a

12
cos(r

2mn
b), a

24
"a

14
cosh(r

1mn
b),

a
31

"D
y
r3
2mn

#(D
xy
#2D

k
)A

mn
a B

2
r
2mn

, a
32

"0,

a
33

"!D
y
r3
1mn

#(D
xy
#2D

k
)A

mn
a B

2
r
1mn

, a
34

"0,



VEHICLE AXLE LOADS 723
a
41

"a
31

cos (r
2mn

b), a
42
"!a

31
sin(r

2mn
b),

a
43
"a

33
cosh(r

1mn
b), a

44
"a

33
sinh(r

1mn
b).

When D2
xy

/D
y
#ohu2

mn
(a/mn)4'D

x
'ohu2

mn
(a/mn)4,

a
11

"0, a
12

"r2
1mn

!vA
mn
a B

2
, a

13
"0, a

14
"r2

3mn
!vA

mn
a B

2
,

a
21

"a
12

sinh(r
1mn

b), a
22

"a
12

cosh(r
1mn

b),

a
23

"a
14

sinh(r
3mn

b), a
24

"a
14

cosh(r
3mn

b),

a
31

"!D
y
r3
1mn

#(D
xy
#2D

k
)A

mn
a B

2
r
1mn

, a
32

"0,

a
33

"!D
y
r3
3mn

#(D
xy
#2D

k
)A

mn
a B

2
r
3mn

, a
34

"0,

a
41

"a
31

cosh(r
1mn

b), a
42

"a
31

sinh(r
1mn

b),

a
43

"a
33

cosh(r
3mn

b), a
44

"a
33

sinh(r
3mn

b).

When D
x
'D2

xy
/D

y
#ohu2

mn
(a/mn)4,

a
11

"r2
4mn

!r2
5mn

!vA
mn
a B

2
, a

12
"0, a

13
"0, a

14
"2r

4mn
r
5mn

,

a
21

"a
11

cosh(r
4mn

b) cos(r
5mn

b)!2r
4mn

r
5mn

sinh(r
4mn

b) sin(r
5mn

b),

a
22

"a
11

cosh(r
4mn

b) sin(r
5mn

b)#2r
4mn

r
5mn

sinh(r
4mn

b) cos(r
5mn

b),

a
23

"a
11

sinh(r
4mn

b) cos(r
5mn

b)!2r
4mn

r
5mn

cosh(r
4mn

b) sin(r
5mn

b),

a
24

"a
11

sinh(r
4mn

b) sin(r
5mn

b)#2r
4mn

r
5mn

cosh(r
4mn

b) cos(r
5mn

b),

a
31

"0, a
32

"(D
xy
#2D

k
)A

mn
a B

2
r
4mn

!3D
y
r2
4mn

r
5mn

#D
y
r3
5mn

,

a
33

"!D
y
r3
4mn

#(D
xy
#2D

k
)A

mn
a B

2
r
4mn

#3D
y
r2
5mn

r
4mn

, a
34

"0,

a
41

"a
33

sinh(r
4mn

b) cos(r
5mn

b)!a
32

cosh(r
4mn

b) sin(r
5mn

b),



724 X. Q. ZHU AND S. S. LAW
a
42

"a
33

sinh(r
4mn

b) sin(r
5mn

b)#a
32

cosh(r
4mn

b) cos(r
5mn

b),

a
43

"a
33

cosh(r
4mn

b) cos(r
5mn

b)!a
32

sinh(r
4mn

b) sin(r
5mn

b),

a
44

"a
33

cosh(r
4mn

b) sin(r
5mn

b)#a
32

sinh(r
4mn

b) cos(r
5mn

b),

APPENDIX B. NOMENCLATURE

D
x
, D

y
#exural rigidities in the x and y directions respectively

E
x
,E

y
Young's moduli of orthotropic material in the x and y directions respectively

G
xy

shear modulus of orthotropic plate
a,b, h length, width and thickness of the orthotropic plate
e eccentricity of moving load
h
e

equivalent thickness of plate
D

xy
torsional rigidity

D
k

twisting rigidity of the orthotropic plate
C damping coe$cient of the plate
w(x, y, t) displacement of the orthotropic plate
wK (x, y, t) acceleration responses of the orthotropic plate
=

ij
(x, y) vibration mode shape of the orthotropic plate

P
i
(t) the ith moving load

xL
i
(t), yL

i
(t) location of the ith moving load

z
t

is the distance from the neutral axis to the bottom tension surface
N

p
number of moving loads

N
s

number of measuring points
N#1 number of sampling points
q
ij
(t) modal co-ordinate

M,K,C mass, sti!ness, and damping matrices of the orthotropic plate
>
ij
(y) mode shape

>(4)
ij

(y),>(2)
ij

(y) fourth and second derivatives of >
ij
(y)

I moment of inertia of I-beam
A

ij
,B

ij
,C

ij
, D

ij
mode parameters

MM,NN number of vibration modes along the x and y directions respectively

e
x
(x, y, t) strains under the orthotropic plate in x direction

e
y
(x, y, t) strains under the orthotropic plate in y direction

o mass density of the orthotropic plate material
l
xy

,l
yx

the Poisson ratio
u

ij
circular frequency, rad/s

h initial phase angle
d(x), d(y) Dirac function
j regularization parameter
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